The nuclear magnetic resonance metabolic profile: Impact of fasting status.

Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States. Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.

Clinical biochemistry. 2021;:85-92
Full text from:

Abstract

INTRODUCTION Measurement of lipoprotein subclass concentration (-c), particle number (-p), and size (-s) by nuclear magnetic resonance (NMR) has gained traction in the clinical laboratory due to associations between smaller lipid particle sizes and atherogenic risk, especially for LDL-p. The standard protocols for lipoprotein measurements by NMR require fasting blood samples; however, patients may not fast properly before sample collection. The study objective was to evaluate the impact of fasting status on the NMR-based lipid profile and to identify key parameters differentiating between fasting and post-meal specimens. METHODS Forty-eight self-reported healthy male and female participants were recruited. Blood was collected after a 12 h fast and 4 h after a high fat meal. Samples were analyzed using the AXINON LipoFIT by NMR assay. The measurements included triglyceride, total cholesterol, IDL-c, and LDL, HDL, VLDL concentration, particle number, and size, as well as glucose, and four amino acids (alanine, valine, leucine and isoleucine). RESULTS As expected, triglycerides increased after the meal (58%, p < 0.0001). Significant changes were also observed for VLDL, LDL, and HDL parameters, and the branched chain amino acids. The ratio of Valine*VLDL-c/LDL-c or Isoleucine*VLDL-c/LDL-c provided equally effective differentiation of fasting and post-meal samples. The ratio cutoffs (79.1 and 23.6 when calculated using valine and isoleucine, respectively) had sensitivities of 86% and specificities of 93-95%. CONCLUSIONS The clinical impact on NMR results from post-meal samples warrants further evaluation. Algorithms to differentiate fasting and post-meal specimens may be useful in identifying suboptimal specimens.